Extension of Topological Invariant Means on a Locally Compact Amenable Group
نویسندگان
چکیده
منابع مشابه
On a Certain Invariant of a Locally Compact Group
Group here always means a locally compact Hausdorff group, subgroup means a closed subgroup. Let G be a group, H a subgroup and G/H the locally compact homogeneous space of left cosets x = xH. We denote by $(G) [®(G/H)] the family of all compact subsets of G [G/H], The group G acts on G/H in a natural way. If X C.G and Y QG/H, write XY for the set of all elements xy, x £ I , j £ Y. Now assume t...
متن کاملVector-valued Invariant Means on Spaces of Bounded Operators Associated to a Locally Compact Group
The purpose of this paper is to introduce and study the notion of a vector-valued π-invariant mean associated to a unitary representation π of a locally compact groupG on S, a self-adjoint linear subspace containing I of B(Hπ). We obtain, among other results, an extension theorem for π-invariant completely positive maps and π-invariant means which characterizes amenability of G. We also study v...
متن کاملAmenable Groups with a Locally Invariant Order Are Locally Indicable
We show that every amenable group with a locally invariant partial order has a left-invariant total order (and is therefore locally indicable). We also show that if a group G admits a left-invariant total order, and H is a locally nilpotent subgroup of G, then a left-invariant total order on G can be chosen so that its restriction to H is both left-invariant and right-invariant. Both results fo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Rocky Mountain Journal of Mathematics
سال: 1992
ISSN: 0035-7596
DOI: 10.1216/rmjm/1181072767